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NOAA’S HAZARD MAPPING SYSTEM

NOAA’s Hazard Mapping System (HMS) is an interactive processing system that allows  
trained satellite analysts to manually integrate data from 3 automated fire detection 
algorithms corresponding to the GOES, AVHRR and MODIS sensors. The result is a quality 
controlled fire product in graphic (Fig 1), ASCII (Table 1) and GIS formats for the 
continental US. 

Figure 1.  Hazard Mapping System (HMS) Graphic Fire Product  for day 5/19/2003
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OLD FORMAT                                                      NEW FORMAT  (as of May 16, 2003)

Lon,       Lat                                 Lon,     Lat,        Time,       Satellite,                Method of Detect
-80.531, 25.351 -80.597,  22.932,    1830,      MODIS AQUA,    MODIS
-81.461, 29.072 -79.648,  34.913,    1829,           MODIS,            ANALYSIS
-83.388, 30.360 -81.048,  33.195,    1829,           MODIS,            ANALYSIS
-95.004, 30.949 -83.037,  36.219,    1829,           MODIS,            ANALYSIS
-93.579, 30.459 -83.037,  36.219,    1829,           MODIS,            ANALYSIS

-108.264, 27.116 -85.767,  49.517,    1805,   AVHRR NOAA-16,  FIMMA
-108.195, 28.151 -84.465,  48.926,    2130,       GOES-WEST,       ABBA
-108.551, 28.413 -84.481,  48.888,    2230,       GOES-WEST,        ABBA
-108.574, 28.441 -84.521,  48.864,    2030,       GOES-WEST,        ABBA
-105.987, 26.549 -84.557,  48.891,    1835,      MODIS AQUA,       MODIS
-106.328, 26.291 -84.561,  48.881,    1655,     MODIS TERRA,      MODIS
-106.762, 26.152 -84.561,  48.881,    1835,      MODIS AQUA,       MODIS
-106.488, 26.006 -89.433,  36.827,    1700,     MODIS TERRA,       MODIS
-106.516, 25.828 -89.750,  36.198,    1845,            GOES,                ANALYSIS

Table 1  Hazard Mapping System (HMS) ASCII Fire Product
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OVERALL TASK OBJECTIVES

Mimic   NOAA-NESDIS   Fire   Analysts’ subjective
decision making and automated fire detection algorithms
with a Neural Network to:

• improve automation & consistency
• allow NESDIS to expand coverage globally



55Wildfire Detection & Prediction,  February 4Wildfire Detection & Prediction,  February 4--6, 20046, 2004

FIGURE 2 NOAA-NESDIS FIRE DETECTION SYSTEM
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SOURCES OF SUBJECTIVITY IN FIRE ANALYSTS 
DECISION MAKING

• Fire is not burning very hot, small in areal extent                       

• Fire is not burning much hotter than surrounding scene

• Dependency on Analysts’ “aggressiveness” in finding fires

• Determination of false detects
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FIGURE 3 SIMPLIFIED DATA EXTRACTION PROCEDURE
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Neural Network Training Set Generation
1. Initially, confine analysis to homogenous geographic region ( see Figs 4-6)

2. Local minima search on each HMS fire location to fix image position of fire
3. Break up 24Hr period into N time segments, e.g.:  

Let   T1 = 0000 – 0600   T3 = 1200 – 1800

T2 = 0600 – 1200   T4 = 1800 – 2400

4. Search for peak negative intensity in 3-4 µm band (see Figs 7-9) for each
fire location and each time segment to fix time of fire

5. With fire fixed in position and time, extract spectral data for all channels
6. For a single channel and single fire location per line, after normalization:

IT1 IT2 IT3 IT4               TARGET
0.232862            0.127503 0.069222 0.103664 0
0.974467            0.291175 0.259978 0.845269 1

•
•
•
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Figure 4  Initial Geographic Study Regions 
(homogenous ground cover)
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Figure 5  Initial Geographic Study Regions 
(homogenous ground cover)
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Figure 6 DECISION REGIONS AND BOUNDARIES FOR HIGHLY 
IDEAL SCATTER PLOT CLUSTERING PATTERNS
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Figure 7  Pixel Time History for a Fire 

2003:Day 126, –83.09 Deg W Long,  29.59 Deg N Lat    File: lightcurve_ch2_mycoords_may07.png        

Negative finger indicative of strong fire signal
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Figure 8   GOES CH2 (3.78 - 4.03 µm) Northern Florida  Fire

2003: Day 126 , –82.10 Deg West Longitude,  30.49 Deg North Latitude  File: florida_ch2.png
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Figure 9   Zoom of GOES CH2 (3.78 - 4.03 µm) Northern Florida  Fire

2003:Day 126, –82.10 Deg W Long,  30.49 Deg N Lat 

Local minimum in vicinity of core pixel used as fire location. 

File: florida_fire_ch2_zoom.png                             File: florida_ch2_zoom.png
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Figure 10  Envisioned Neural Network Configuration
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GOES  CH1 GOES CH2    GOES CH4     AVHRR  CH1            AVHRR CH 3b   MODIS  CH22                       

I1 I2   I3  I4     I1 I2  I3  I4     I1  I2 I3 I4 I1  I2  I3  I4           I1 I2  I3  I4  I1 I2  I3   I4     

Figure 11     3-Sensor Input Backpropagation Neural Network  
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Figure 12 Scatter Plot of Background-Subtracted GOES CH 1/CH 2

Fire (lower) and non-fire (upper) separation of clusters 
2003: June 2             Northern Florida        File: scatter_fires12.png 

(GOES CH1, CH2, CH4 are input to neural network) 
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Figure 13 Scatter Plot of Background –Subtracted GOES CH 2/CH 4

Fire (left) and non-fire (right) separation of clusters 
2003: June 2       Northern Florida           File:scatter_fires22.png

(GOES CH1, CH2, CH4 are input to neural network) 
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TASK SUMMARY
Neural network software is to be integrated with NOAA NESDIS’s Hazard Mapping 
System (HMS) as an aid in automating the fire detection system and improving 
consistency. Initial scatter plots (Figures 12, 13) suggest fire is separable from the 
background with a minimum of 3 spectral channels. A neural network will be trained 
to recognize fires from 3 spectral channels of GOES, MODIS and AVHRR imagery, 
mimicking not only the FIMMA (AVHRR), WF-ABBA (GOES) and MODIS automated 
algorithms but the subjective decision making by NOAA Fire Analysts’ as well.       

Data reduction has proven to be the most difficult aspect of the task because 
NOAA’s fire product does not permit precise correlation between identified fires and 
particular sensor images in which they appear. Additionally, HMS fire geographic 
locations are offset by spacecraft navigational and systemic software errors.       

An envisioned neural network architecture is depicted in Figures 10 and 11.  Input 
vectors attempt to characterize fire progression throughout the day  by providing  a 
time series input to the network. Early attempts at obtaining neural network 
convergence during training with these time series vectors have not proven as 
successful however as vectors which indicate the instantaneous presence or 
absence of fires. Continuing research requires refining the neural network training 
process with regard to types of input vectors. Further work is also aimed at 
determination of the extent of class separation between different categories of fires 
typical of various land cover types (Figure 6) which will also affect training 
approaches.


